EN 15650:2010-09 # FIRE DAMPER FDMC These technical specifications state a row of manufactured sizes and models of fire dampers (further only dampers) FDMC. It is valid for production, designing, ordering, delivery, assembly and operation. # I. CONTENT | II. GENERAL INFORMATION | 2 | |------------------------------------------------------|----| | 1. Description | 2 | | 2. Design | 3 | | 3. Dimensions, weights | 3 | | 4. Placement and Assembly | 5 | | 5. Statement of installations | 6 | | III. TECHNICAL DATA | 10 | | 6. Pressure loss, noise data | 10 | | 7. Electrical Components, Connection Diagrams | 11 | | IV. MATERIAL, FINISHING | 11 | | 8. Material | 11 | | V. INSPECTION, TESTING | 11 | | 9. Inspection, testing | 11 | | VI. TRANSPORTATION AND STORAGE | 12 | | 10. Logistic terms. | 12 | | VII. ASSEMBLY, ATTENDANCE, MAINTENANCE AND REVISIONS | 12 | | 11. Assembly | 12 | | 12. Entry into service and revisions | 12 | | VIII. ORDERING INFORMATION | 13 | | 13. Ordering key | 13 | ### II. GENERAL INFORMATION # 1. Description Fig. 1 FDMC **1.1.** Fire dampers are shutters in ducts of air-conditioning devices that prevent spreading the fire and combustion products from one fire segment to the other one by means of closing the duct in the points of fire separating constructions. Damper blade automatically closes air duct using an actuating mechanism back spring. The back spring of the actuating mechanism is started when the thermoelectrical starting mechanism BAT is activated, when a reset button on BAT is pushed or when a power supply of the actuating mechanism is stopped. The damper is sealed with a silicon packing against smoke penetration after closing the blade. At the same time, the damper blade is bed in a material which enlarges its capacity and air proofs the air duct. Dampers have one inspection hole, since the shutting device and the inspection hole can be set into the most advantageous position (with respect to the operation and manipulation with the control device). #### **1.2.** Damper characteristics - CE certified acc. to EN 15650 - Tested in accordance with EN 1366-2 - Classified acc. to EN 13501-3+A1 - Fire resistance EIS 60 - External Casing leakage class C, Internal leakage class 1 acc. to EN 1751 - Cycling test in class C 10000 acc. to EN 15650 - Corrosion resistant acc. to EN 15650 - Certificate of constancy of performance No. 1391-CPR-0090/2014 - Declaration of Performance No. CDM/FDMC/001/13 - Hygienic assessment of fire dampers Report No. 1.6/13/16/1 # **1.3.** Working conditions Right damper function is secured under the following conditions: - a) Maximum air circulation speed: 12 m.s Maximum pressure difference: 1200 Pa - b) Dampers could be displaced into position "CLOSED" only in case that ventilator, or Air Handling Unit is switched off. The goal is the securing of proper closing and safe function of Fire Damper in case of Fire. - c) The air circulation in the whole damper section must be secured as steady on whole surface. Operation of the dampers does not depend on the direction of air circulation. The dampers can be located in an arbitrary position. Dampers are suitable for systems without abrasive, chemical and adhesive particles. Dampers are designed for macroclimatic areas with mild climate according to EN 60 721-3-3. Temperature in the place of installation is permitted to range from - 20°C to + 50°C. # 2. Design #### 2.1. FDMC FDMC is always equipped by actuating mechanism BFL 24-T (further only "actuating mechanism"). After being connected to power supply AC/DC 24V, the actuating mechanism displaces the damper blade into operation position "OPEN" and at the same time it pre-stretches its back spring. When the actuating mechanism is under voltage, the damper blade is in the position "OPEN" and the back spring is pre-stretched. Time needed for full opening of the flap blade from the position "CLOSED" to the position "OPEN" is maximum 140s. If the actuating power supply is cut off (due to loss of supply voltage, activation of thermoelectrical actuating mechanism or pushing the reset button on the thermoelectrical starting mechanism BAT), the back spring displaces the damper blade into the breakdown position "CLOSED". The time of displacing the blade from the position "OPEN" to the position "CLOSED" takes maximum 16 s. In case that the power supply is restored again (the blade can be in any position), the actuating mechanism starts to re-displace the damper blade into the position "OPEN". A thermoelectrical starting mechanism BAT, which contains three thermal fuses Tf1 and Tf2, is a part of the actuating mechanism. These fuses are activated when temperature +72 °C has been exceeded (the fuse Tf1 when the temperature around the damper and the fuses Tf2 when the temperature inside the air-conditioning piping has been exceeded). After the thermal fuse Tf1 or Tf2 has been activated, the power supply is permanently and irreversibly cut off and the actuating mechanism, by means of the pre-stretched spring, displaces the damper blade into the breakdown position "CLOSED". #### 3. Dimestions, weights # 3.1. Dimensions Fig. 2 Fire damper FDMC #### 3.2. Weight and effective area Tab. 3.2.1. Weight and effective area | Size | а | Weight | Effective area S <sub>ef</sub> [m²] | Actuating mechanism | | | | | |------|------|--------|-------------------------------------|---------------------|--|--|--|--| | 100 | - | 3,1 | 0,0036 | BFL | | | | | | 125 | - | 3,4 | 0,0068 | BFL | | | | | | 140 | - | 3,6 | 0,0092 | BFL | | | | | | 150 | - | 3,7 | 0,0109 | BFL | | | | | | 160 | - | 3,8 | 0,0129 | BFL | | | | | | 180 | - | 4,1 | 0,0172 | BFL | | | | | | 200 | - | 4,4 | 0,0222 | BFL | | | | | | 225 | - | 4,7 | 0,0293 | BFL | | | | | | 250 | 9 | 5,5 | 0,0374 | BFL | | | | | | 280 | 24 | 6,0 | 0,0484 | BFL | | | | | | 315 | 41,5 | 6,6 | 0,0630 | BFL | | | | | | 350 | 59 | 7,0 | 0,0793 | BFL | | | | | | 355 | 61,5 | 7,3 | 0,0821 | BFL | | | | | | 400 | 84 | 8,2 | 0,1065 | BFL | | | | | #### 3.3. The Blade overlaps For fire damper the open damper blade overlaps the damper body from dimension ø 250 by the "a" value. These values are specified in the Tab. 3.2.1 Value has to be respected when projecting related air-conditioning piping. Fig. 3 Value "a" # 4. Placement and Assembly - **4.1.** Fire dampers are suitable for installation in arbitrary position in vertical and horizontal passages of fire separating constructions. Damper assembly procedures must be done so as all load transfer from the fire separating constructions to the damper body is absolutely excluded. Back-to-back air-conditioning piping must be hung or supported so as all load transfer from the back-to-back piping to the damper is absolutely excluded. - **4.2.** To provide needed access space to the control device, all other objects must be situated at least 350 mm from the control parts of the damper. Inspection hole must be accessible. - **4.3.** The distance between the fire damper and the construction (wall, ceiling) must be minimal in range from 10 to 50 mm. In case that two or more dampers are supposed to be installed in one fire separating construction, the distance between the adjacent dampers must be at least 50 mm Fig. 4 The distance between the fire damper and the construction - **4.4.** The control mechanism has to be protected (covered) against damage and pollution during installation process. - **4.5.** All fire dampers has to be closed during installation process. The damper body should not be deformed in the course of bricking in. Once the damper is built in, its blade should not grind on the damper body during opening or closing. - **4.6.** Round dampers are with rubber tightness and glued all the way around. - **4.7.** Installation opening dimensions Fig. 5 Installation opening dimensions FDMC # **4.8.** Examples of fire damper installing The fire damper can be installed into a solid wall construction made e.g. of normal concrete/masonry, porous concrete with minimum thickness 100 mm or into solid ceiling construction made e.g. of normal concrete/porous concrete with minimum thickness 150 mm. Recommended installation openings are specified in Fig. 5. The fire damper can be installed into a gypsum wall construction with fire classification El 60. # **5. Statement of installations** # **5.1.** Statement of installation Tab. 5.1.1. Statement of installations | Damper<br>size | FDMC installation | Classifi-<br>-cation | Figure | |----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------| | | Damper installed in a solid wall construction. Space between damper and wall is filled by mineral stone wool (min. density 140 kg/m³) or another approved fire insulation system. Surface is covered by fire protection mastic (Promastop P,K) or equal min. thickness 1 mm. | EIS 60 | 6 | | | Damper installed in a gypsum wall construction. Space between damper and wall is filled by mineral stone wool (min. density 140 kg/m³) or another approved fire insulation system. Surface is covered by fire protection mastic (Promastop P,K) or equal min. thickness 1 mm. | EIS 60 | 7 | | 100-400 | Damper installed in a solid ceiling construction. Space between damper and ceiling is filled by mortar, gypsum or another approved fire sealing system for damper installation. | EIS 60 | 8 | | | Damper installed in a solid ceiling construction. Space between damper and wall is filled by mineral stone wool (min. density 140 kg/m³) or another approved fire insulation system. Surface is covered by fire protection mastic (Promastop P,K) or equal min. thickness 1 mm. | EIS 60 | 9 | | | Duct ended by installation shaft. Space between damper and ceiling is filled by mortar, gypsum or another approved fire sealing system into duct installation - solid or gypsum wall construction | EIS 60 | 10 | Appropriate isolation and installation materials for fire resistance EIS 60 should be used. Producer of these materials is random (Isover, Protecta, Rockwool, PAROC etc.) Used materials must be approved and have min. the same fire resistance as required for Fire Damper - EIS 60, or higher. Fig. 6 Installation in a solid wall construction Fig. 7 Installation in a gypsum wall construction Fig. 8 Installation in a solid ceiling construction Fig. 9 Installation in a solid ceiling construction Fig. 10 Installation in a installation shaft # III. TECHNICAL DATA # 6. Pressure loss, noise data Tab. 6.1.1. FDMC | | | v [m.s <sup>-1</sup> ] | | | | | | | | | | v [m.s <sup>-1</sup> ] | | | | | | | | |-----|--------------------------------------|------------------------|------|------|------|------|-------|-------|-------|-----------|--------------------------------------|------------------------|------|------|------|------|------|------|------| | Siz | Size | | 4 | 5 | 6 | 7 | 8 | 9 | 10 | Size | | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | | | V [m³.h-¹] | 85 | 113 | 141 | 170 | 198 | 226 | 254 | 283 | | V [m³.h-1] | 429 | 573 | 716 | 859 | 1002 | 1145 | 1288 | 1431 | | | V <sub>ef</sub> [m.s <sup>-1</sup> ] | 6,5 | 8,7 | 10,9 | 13,1 | 15,3 | 17,5 | 19,6 | 21,8 | | V <sub>ef</sub> [m.s <sup>-1</sup> ] | 4,1 | 5,4 | 6,8 | 8,1 | 9,5 | 10,9 | 12,2 | 13,6 | | 100 | L <sub>WA</sub> [dB] | 21,6 | 29,1 | 35,0 | 39,7 | 43,7 | 47,2 | 50,3 | 53,0 | 225 | L <sub>WA</sub> [dB] | 15,1 | 22,6 | 28,4 | 33,2 | 37,2 | 40,7 | 43,7 | 46,5 | | | △p [Pa] | 148,0 | 26,3 | 41,0 | 59,1 | 80,4 | 105,1 | 133,0 | 164,2 | | ∆ p [Pa] | 2,6 | 4,6 | 7,2 | 10,3 | 14,0 | 18,3 | 23,2 | 28,6 | | | V [m³.h-1] | 133 | 177 | 221 | 265 | 309 | 353 | 398 | 442 | | V [m³.h-¹] | 530 | 707 | 884 | 1060 | 1237 | 1414 | 1590 | 1767 | | 125 | V <sub>ef</sub> [m.s <sup>-1</sup> ] | 5,4 | 7,2 | 9,0 | 10,8 | 12,6 | 14,4 | 16,2 | 18,0 | 250 | V <sub>ef</sub> [m.s <sup>-1</sup> ] | 3,9 | 5,2 | 6,6 | 7,9 | 9,2 | 10,5 | 11,8 | 13,1 | | 125 | L <sub>WA</sub> [dB] | 21,2 | 28,7 | 34,5 | 39,3 | 43,3 | 46,8 | 49,8 | 52,6 | 250 | L <sub>WA</sub> [dB] | 13,3 | 20,8 | 26,6 | 31,3 | 35,3 | 38,8 | 41,9 | 40,4 | | | ∆ p [Pa] | 11,3 | 20,2 | 31,5 | 45,3 | 61,7 | 80,6 | 102,0 | 125,9 | - | ∆ p [Pa] | 1,9 | 3,3 | 5,2 | 7,4 | 10,1 | 13,2 | 16,7 | 20,6 | | | V [m³.h-¹] | 166 | 222 | 277 | 333 | 388 | 443 | 499 | 554 | | V [m³.h-¹] | 665 | 887 | 1108 | 1330 | 1552 | 1773 | 1995 | 2217 | | 140 | V <sub>ef</sub> [m.s <sup>-1</sup> ] | 5,0 | 6,7 | 8,4 | 10,0 | 11,7 | 13,4 | 15,1 | 16,7 | 280 | V <sub>ef</sub> [m.s <sup>-1</sup> ] | 3,8 | 5,1 | 6,4 | 7,6 | 8,9 | 10,2 | 11,4 | 12,7 | | 140 | L <sub>WA</sub> [dB] | 21,0 | 28,5 | 34,3 | 39,0 | 43,1 | 46,5 | 49,6 | 52,3 | | L <sub>WA</sub> [dB] | 11,3 | 18,8 | 24,6 | 29,4 | 33,4 | 36,9 | 39,9 | 42,7 | | | ∆ p [Pa] | 9,6 | 17,1 | 26,7 | 38,5 | 52,4 | 68,4 | 86,6 | 106,9 | | ∆ p [Pa] | 1,3 | 2,3 | 3,6 | 5,1 | 7,0 | 9,1 | 11,5 | 14,2 | | | V [m³.h-¹] | 191 | 254 | 318 | 382 | 445 | 509 | 573 | 636 | | v [m³.h-1] | 842 | 1122 | 1403 | 1683 | 1964 | 2244 | 2525 | 2806 | | 150 | V <sub>ef</sub> [m.s <sup>-1</sup> ] | 4,9 | 6,5 | 8,1 | 9,7 | 11,3 | 13,0 | 14,6 | 16,2 | 315 | V <sub>ef</sub> [m.s <sup>-1</sup> ] | 3,7 | 4,9 | 6,2 | 7,4 | 8,7 | 9,9 | 11,1 | 12,4 | | | L <sub>WA</sub> [dB] | 20,3 | 27,8 | 33,6 | 38,3 | 42,4 | 45,8 | 48,9 | 51,6 | ,6 | L <sub>WA</sub> [dB] | 8,9 | 16,4 | 22,2 | 27,0 | 31,0 | 34,5 | 37,6 | 40,3 | | | ∆p [Pa] | 8,2 | 14,7 | 22,9 | 33,0 | 44,9 | 58,6 | 74,2 | 91,6 | | ∆ p [Pa] | 0,9 | 1,5 | 2,4 | 3,4 | 4,7 | 6,1 | 7,7 | 9,5 | | | v [m³.h-1] | 217 | 290 | 362 | 434 | 507 | 579 | 651 | 724 | | v [m³.h⁻¹] | 1039 | 1385 | 1732 | 2078 | 2425 | 2771 | 3117 | 3464 | | 160 | V <sub>ef</sub> [m.s <sup>-1</sup> ] | 4,7 | 6,2 | 7,8 | 9,4 | 10,9 | 12,5 | 14,0 | 15,6 | ,6<br>350 | V <sub>ef</sub> [m.s <sup>-1</sup> ] | 3,6 | 4,9 | 6,1 | 7,3 | 8,5 | 9,7 | 10,9 | 12,1 | | | L <sub>WA</sub> [dB] | 19,6 | 27,1 | 32,9 | 37,7 | 41,7 | 45,2 | 48,3 | 51,0 | 000 | L <sub>WA</sub> [dB] | 8,2 | 15,7 | 21,5 | 26,3 | 30,3 | 33,8 | 36,9 | 39,6 | | | ∆p [Pa] | 6,9 | 12,2 | 19,1 | 27,5 | 37,4 | 48,8 | 61,8 | 76,3 | | ∆p [Pa] | 0,7 | 1,2 | 1,9 | 2,7 | 3,7 | 4,8 | 6,1 | 7,5 | | | V [m³.h-¹] | 275 | 366 | 458 | 550 | 641 | 733 | 824 | 916 | | V [m³ h-1] | 1069 | 1425 | 1782 | 2138 | 2494 | 2851 | 3207 | 3563 | | 180 | V <sub>ef</sub> [m.s <sup>-1</sup> ] | 4,4 | 5,9 | 7,4 | 8,9 | 10,4 | 11,8 | 13,3 | 14,8 | 355 | V <sub>ef</sub> [m.s <sup>-1</sup> ] | 3,6 | 4,8 | 6,0 | 7,2 | 8,4 | 9,6 | 10,9 | 12,1 | | | L <sub>WA</sub> [dB] | 17,8 | 25,3 | 31,1 | 35,9 | 39,9 | 43,3 | 46,4 | 49,2 | 333 | L <sub>WA</sub> [dB] | 7,2 | 14,7 | 20,5 | 25,3 | 29,3 | 32,8 | 35,9 | 38,6 | | | ∆ p [Pa] | 5,0 | 8,9 | 13,9 | 20,1 | 27,3 | 35,7 | 45,1 | 55,7 | | ∆ p [Pa] | 0,6 | 1,1 | 1,7 | 2,5 | 3,4 | 4,5 | 5,6 | 7,0 | | | V [m³.h-¹] | 339 | 452 | 565 | 679 | 792 | 905 | 1018 | 1131 | | V [m³.h-1] | 1357 | 1810 | 2262 | 2714 | 3167 | 3619 | 4072 | 4524 | | 200 | V <sub>ef</sub> [m.s <sup>-1</sup> ] | 4,2 | 5,7 | 7,1 | 8,5 | 9,9 | 11,3 | 12,7 | 14,2 | 400 | V <sub>ef</sub> [m.s <sup>-1</sup> ] | 3,5 | 4,7 | 5,9 | 7,1 | 8,3 | 9,4 | 10,6 | 11,8 | | | L <sub>WA</sub> [dB] | 15,7 | 23,1 | 29,0 | 33,7 | 37,7 | 41,2 | 44,3 | 47,0 | .30 | L <sub>WA</sub> [dB] | 6,6 | 14,1 | 19,9 | 24,7 | 28,7 | 32,2 | 35,3 | 38,0 | | L | ∆p [Pa] | 3,4 | 6,1 | 9,5 | 13,7 | 18,7 | 24,4 | 30,9 | 38,2 | | ∆ p [Pa] | 0,5 | 0,8 | 1,3 | 1,8 | 2,5 | 3,3 | 4,1 | 5,1 | # 7. Electrical Components, Connection Diagrams # **7.1.** Actuating mechanism Tab. 7.1.1. Actuating mechanism BELIMO BFL 24-T | Actuating mechanism BELIMO | BFL 24-T | | | | | | | |-----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--| | Nominal voltage | AC 24V 50/60Hz | | | | | | | | | DC 24 V | | | | | | | | Power consumption - motoring | 2,5 W | | | | | | | | - holding | 0,8 W | | | | | | | | Dimensioning | 4VA (Imax 8,3 A @ 5 ms) | | | | | | | | Protection class | III | | | | | | | | Degree of protection | IP 54 | | | | | | | | Running time - motor | <60 s | | | | | | | | - spring return | ~ 20 s | | | | | | | | Ambient temperature | - 30 °C 55 °C | | | | | | | | - normal duty | The safe position will be attained up to max. 75°C - 40 °C 55 °C | | | | | | | | <ul><li>safety duty</li><li>non-operating temperature</li></ul> | | | | | | | | | | achte 4 m 2 v 0.75 mm² (DEL 24 T.CT) with 2 nin plug in connectors | | | | | | | | Connecting - motor - auxiliary switch | cable 1 m, 2 x 0,75 mm² (BFL 24-T-ST) with 3-pin plug-in connectors cable 1 m, 6 x 0,75 mm² (BFL 24-T-ST) with 6-pin plug-in connectors | | | | | | | | - auxiliary switch | | | | | | | | | Thermal trips | Tf1: duct outside temperature 72°C | | | | | | | | | Tf2: duct inside temperature 72°C | | | | | | | Fig. 11 Actuating mechanism BELIMO BFL 24-T # IV. MATERIAL, FINISHING # 8. Material - **8.1.** Damper bodies are supplied in the design made of galvanized plate without any other surface finish. - **8.2.** Damper blades are made of fire resistant asbestos free boards made of mineral fibres. - **8.3.** Fasteners is galvanized. # V. INSPECTION, TESTING # 9. Inspection, testing **9.1.** The appliance is constructed and and preset by the manufacturer, its operation is dependent on proper installation and adjustment. # VI. TRANSPORTATION AND STORAGE #### 10. Logistic terms - **10.1.** Dampers are transported by box freight vehicles without direct weather impact, there must not occur any sharp shocks and ambient temperature must not exceed +40°C. Dampers must be protected against mechanic damages when transported and manipulated. During transportation, the damper blade must be in the "CLOSED" position. - **10.2.** Dampers are stored indoor in environment without any aggressive vapours, gases or dust. Indoor temperature must be in the range from -5°C to +40°C and maximum relative humidity 80%. Dampers must be protected against mechanic damages when transported and manipulated. #### VII. ASSEMBLY. ATTENDANCE. MAINTENANCE AND REVISIONS # 11. Assembly - **11.1.** All effective safety standards and directives must be observed during fire damper assembly. - **11.2.** To ensure reliable fire damper function it is necessary to avoid blocking the closing mechanism and contact surfaces with collected dust, fibre and sticky materials and solvents. - **11.3.** Manual operation Without power supply, the damper can be operated manually and fixed in any required position. Release of the locking mechanism can be achieved manually or automatically by applying the supply voltage. #### 12. Entry into service and revisions - **12.1.** Before entering the dampers into operation after assembly and after sequential revisions, checks and functionality tests of all designs including operation of the electrical components must be done. After entering into operation, these revisions must be done according to requirement set by national regulations. - **12.1.1.** In case that dampers are found unable to serve for their function for any cause, it must be clearly marked. The operator is obliged to ensure so that the damper is put into condition in which it is able to function and meanwhile he is obliged to provide the fire protection another appropriate way. - **12.1.2.** Results of regular checks, imperfections found and all-important facts connected with the damper function must be recorded in the "FIRE BOOK" and immediately reported to the operator. - **12.2.** Before entering the dampers into operation after their assembly and by sequential checks, the following checks must be carried out. - **12.2.1.** Visual inspection of proper damper integration, inside damper area, damper blade, contact surfaces and silicon sealing. - **12.2.2.** Inspection hole disassembly: release the covering lid by unscrewing screws. Then tilt remove lid from its original position. - 12.2.3. Check of blade displacement into the breakdown position "CLOSED" can be done after cutting off the actuating mechanism supply (e.g. by pressing the RESET button at the thermoelectrical starting mechanism BAT or cutting off the supply from ELECTRICAL FIRE SIGNALISATION). Check of blade displacement back into the "OPEN" position can be done after restoration of power supply (e.g. by releasing the RESET button or restoration of supply from ELECTRICAL FIRE SIGNALISATION). # VIII. ORDERING INFORMATION # 13. Ordering key MANDÍK, a.s. Dobříšská 550 26724 Hostomice Czech Republic Tel.: +420 311 706 706 E-Mail: mandik@mandik.cz www.mandik.com The producer reserves the right for innovations of the product. For actual product information see www.mandik.com