

WHIRLING ANEMOSTAT WITH ADJUSTABLE BLADES

VASM

These technical conditions define a series of the manufactured sizes and versions of whirling anemostats with adjustable blades (hereinafter anemostats) VASM 315, 400, 630. They apply to manufacturing, designing, ordering, deliveries, installation and operation.

. CONTENT

II. GENERAL	3
1. Description	3
2. Design	3
3. Dimensions and weights	4
4. Installation	5
III. TECHNICAL DATA	6
5. Electrical elements, wiring diagram	6
6. Calculation and determining quantities	8
IV. MATERIAL, FINISHING	14
7. Material	14
V. PACKING, TRANSPORTATION AND STORAGE	14
8. Logistics terms	14
VI. ORDERING INFORMATION	15
9. Ordering key	15

II. GENERAL

- 1. Description
 - **1.1.** Adjustable whirling anemostats represent a terminal air-conditioning element used to distribute large amounts of air with high temperature difference (ranged between -10 and +15 °C). By adjusting the angle of air outlet (from horizontal outlet for cooling, through deflected outlet for isothermal air, to the vertical outlet used for heating), intensive mixing of inlet air with the existing is provided. Anemostats are supplied with diffusers.

They are suitable for ceiling heights of over 3.8 m.

1.2. Working conditions

Temperature in the place of installation is permitted to range from - 20°C to + 70°C. If electrical components are used the temperature range is limited by these components.

Anemostats are designed for macroclimatic areas with mild climate according to EN 60 721-3-3.

Anemostats are suitable for systems without abrasive, chemical and adhesive particles.

2. Design

- **2.1.** Anemostats consist of a round front panel with adjustable blades, diffuser, connection box for either horizontal or vertical connection, and possible the servo actuator. Side or upper connection to piping can be made with round connection sockets via the connection box, or without the connection box from above to the front panel.
- **2.2.** Versions of anemostats are shown in the table Tab. 2.1.1. The version is designated by two digits following the TP mark.

Version of anemostat - type of control	Two digits following the TP mark
Manually controlled	.01
Actuator controlled 230V, position regulation without signalling	.45
Actuator controlled 230V, position regulation with signalling	.46
Actuator controlled 24V, position regulation without signalling	.55
Actuator controlled 24V, position regulation with signalling	.56
Actuator controlled 24V SR, with smooth regulation	.57

Tab. 2.2.1. Version of VASM

2.3. For VAPM connection to the piping is possible as follows:

- horizontal connection (via connection box with circular spigot connections on the part as required with or without control valve)
- vertical connection (via connection box with circular spigot connections from the top as required with or without control valve)
- separate front panel (with access to the pipe above).

Adjustment of blades for cold inlet air – horizontal outlet

Adjustment of blades for isothermal inlet air – outlet in 45° direction

Adjustment of blades for hot inlet air - vertical outlet

Fig. 1 Placement actuator

3. Dimensions and weights

3.1. Anemostats dimensions

Tab. 3.1.1. Dimensions

Size	øB	øC	Ø D	۵A	H₁	H2	H₃	H₄	h	øK₀
315	375	315	248	500	525	215	370	410	63	464
400	480	400	313	600	608	248	428	520	80	567
630	720	630	398	750	850	388	615	755	125	870

Fig. 2 horizontal connection VASM ... / V

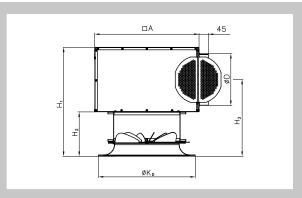
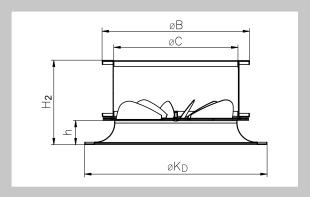
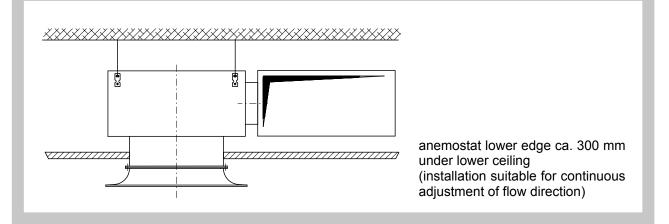
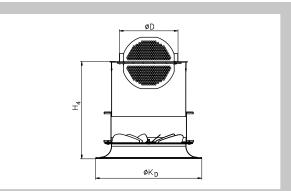



Fig. 4 separate front panel (without connection box)

3.2. Anemostats weights


Tab. 3.2.1. Weights

Size	Connection with	Sonoroto front nonal		
Size	horizonta	vertical	 Separate front panel 	
315	9	5,5	3,5	
400	16	12	5,5	
630	26	22	14	


4. Placement and installation

4.1. Front panel is attached to connection box with bolts. Connection boxes are equipped with suspension lugs. Several examples of connection methods are given in the following.

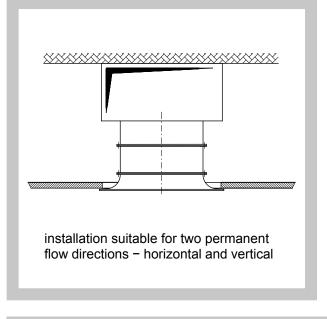


Fig. 3 vertical connection VASM ... / S

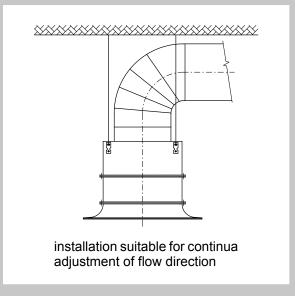


Fig. 6 Installation into lower ceiling

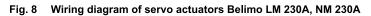
Fig. 7 Installation out of lower ceiling

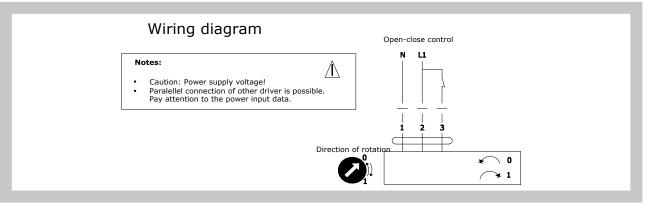
III. TECHNICAL DATA

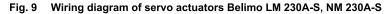
5. Electrical elements, wiring diagram

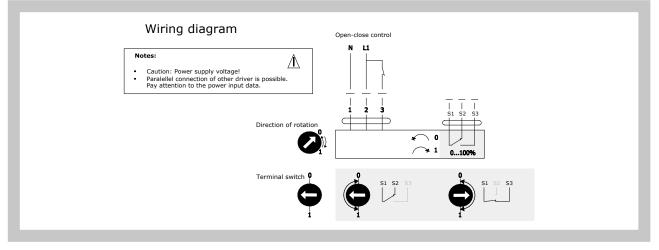
5.1. Type and weights of actuators.

Tab. 5.1.1.	Type and weights of actuators
-------------	-------------------------------


Туре	Type of actuator	Positioning signal	Torque	Weight [kg]	Dimensions L x H x W
	Belimo LM 230A-S	YES		0,60	
	Belimo LM 230A	NO	5 Nm	0,50	
VASM 315 VASM 400	Belimo LM 24A-S	YES		0,60	116 x 64 x 88
VA3IWI 400	Belimo LM 24A	NO		0,50	
	Belimo LM 24A-SR	YES		0,50	
	Belimo NM 230A-S	YES		0,85	
	Belimo NM 230A	NO		0,80	
VASM 630	Belimo NM 24A-S	YES	10 Nm	0,85	124 x 62 x 80
	Belimo NM 24A	NO		0,75	
	Belimo NM 24A-SR	YES		0,80	


5.2. Supply voltage and power inputs.


Tab. 5.2.1. Supply voltage and power input


Type of actuator	Supply voltage	Power input			
	Supply voltage	In operation	Resting position	Dimensioning	
LM 230A, LM 230A-S	AC 100 240 V, 50/60 Hz	1,5 W	0,4 W	4 VA	
LM 24A, LM 24A-S	AC 24 V, 50/60 Hz; DC 24 V	1,0 W	0,2 W	2 VA	
LM 24A-SR	AC 24 V, 50/60 Hz; DC 24 V	1,0 W	0,4 W	2 VA	
NM 230A, NM 230A-S	AC 100 240 V, 50/60 Hz	2,5 W	0,6 W	6 VA	
NM 24A, NM 24A-S	AC 24 V, 50/60 Hz; DC 24 V	1,5 W	0,2 W	3,5 VA	
NM 24A-SR	AC 24 V, 50/60 Hz; DC 24 V	2,0 W	0,4 W	4 VA	

5.3. Wiring diagram of servo actuators Belimo.

Fig. 10 Wiring diagram of servo actuators Belimo LM 24A, NM 24A

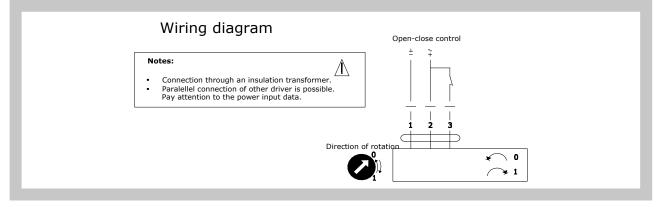
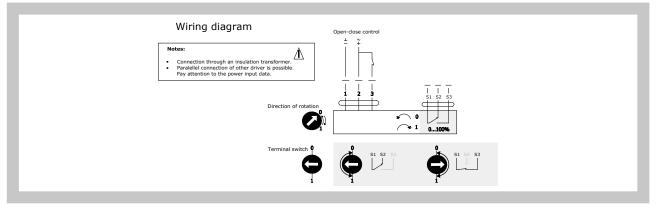
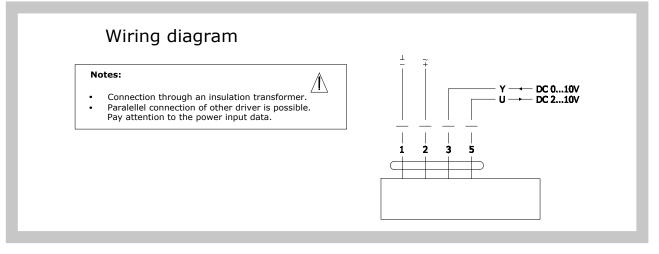
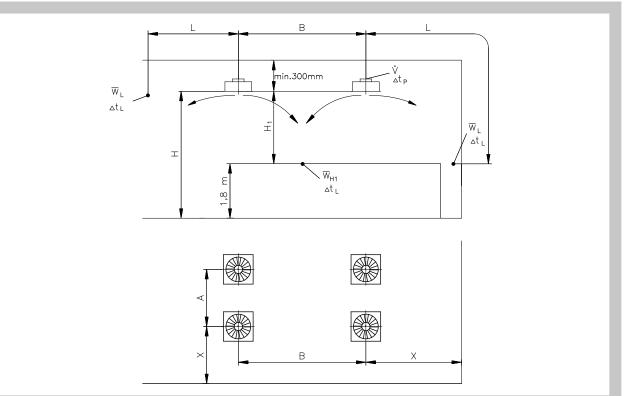




Fig. 11 Wiring diagram of servo actuators Belimo LM 24A-S, NM 24A-S

Fig. 12 Wiring diagram of servo actuators Belimo LM 24A-SR, NM 24A-SR

6. Calculation and determination quantities


6.1. Basic parameters

Tab. 6.1.1. Basic parameters

Size	315		40	00	630		
Version with connection box	Connection						
version with connection box	Horizontal	Vertical	Horizontal	Vertical	Horizontal	Vertical	
Ů _{max} [m³.h⁻¹]	900	1000	1300	1600	2200	2400	
. v _{min} [m³.h⁻¹]	350	500	500	550	800	1000	
L _{WA max} [dB(A)]	53	49	57	56	55	53	
L _{WA min} [dB(A)]	27	31	26	27	25	28	
S _{ef} [m²]	0,03		0,05		0,10		

Fig. 13

ΜΛΝϽίκ[®]

Ů	[m³.h -1]	volumetric flow rate for one anemostat	L	[m]	horizontal + vertical distance (X + H ₁)
Α, Β	[m]	distance between two anemostats	L_p	[m]	depth of air flow reach
L	[m]	horizontal + vertical distance $(X + H_1)$	∆t _p	[K]	difference between inlet air temperature
Х	[m]	distance from anemostat centre to wall			and room air temperature
Н	[m]	distance between anemostat lower edge and floor	∆t∟	[K]	difference between flow air temperature and room air temperature in the distance of: $L = A/2 + H_1$
H₁	[m]	distance between anemostat lower edge and living zone			or $L = B/2 + H_1$ or $L = B/2 + H_1$ or $L = X + H_1$
\overline{W}_{L}	[m.s ⁻¹]	mean flow velocity at wall	∆p _c	[Pa]	total pressure loss at ρ = 1,2 kg.m ³
Wef	[m.s ⁻¹]	effective velocity	Lwa	[dB(A)]	acoustic power level
\overline{W}_{H1}	[m.s ⁻¹]	mean flow velocity between two anemostats in H1 distance	S _{ef}	[0B(A)] [m²]	Effective area

6.2. Acoustic powers and pressure losses, temperature coefficient and airflow velocity

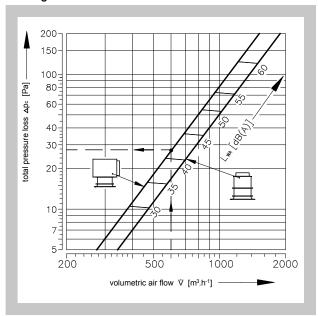
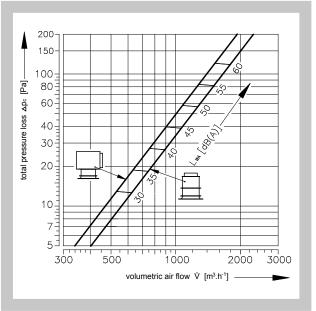
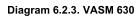




Diagram 6.2.1. VASM 315

Diagram 6.2.2. VASM 400

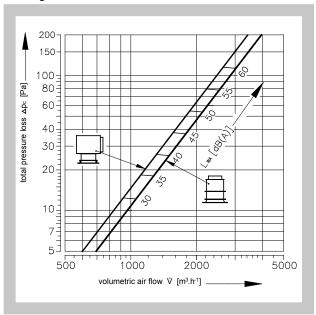
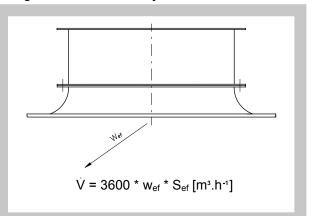



Fig. 14 Effective velocity

Diagram 6.2.4. Temperature coefficient

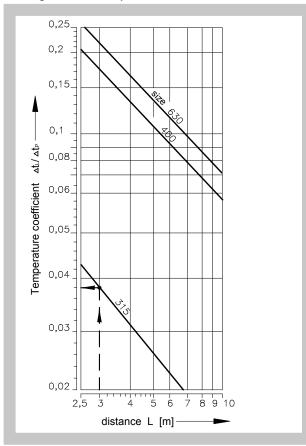
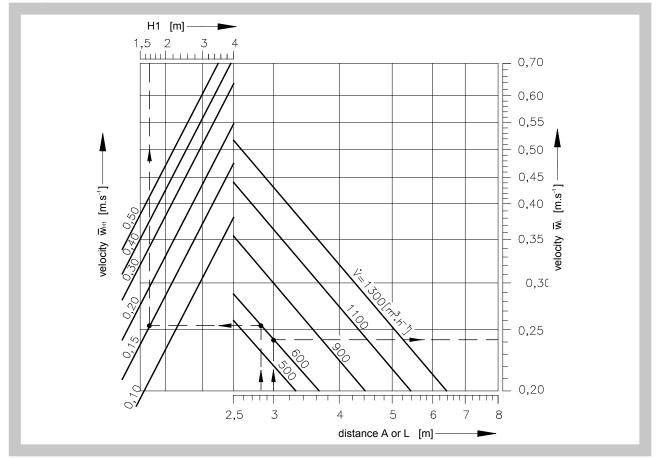



Diagram 6.2.5. Flow velocity VASM 315

Diagram 6.2.6. Flow velocity VASM 400

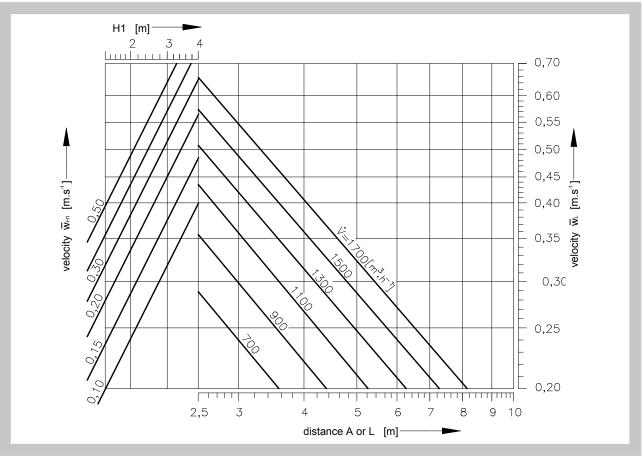
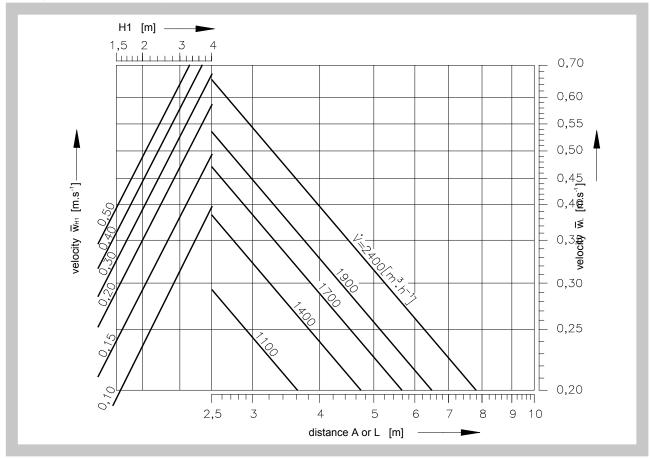
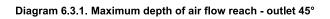




Diagram 6.2.7. Flow velocity VASM 630

6.3. Maximum depth of air flow reach

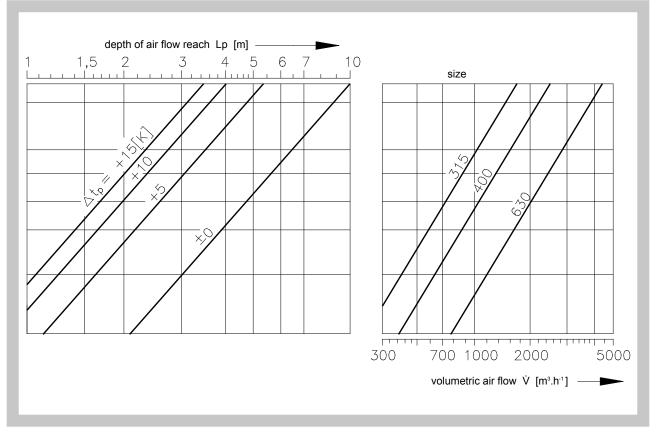
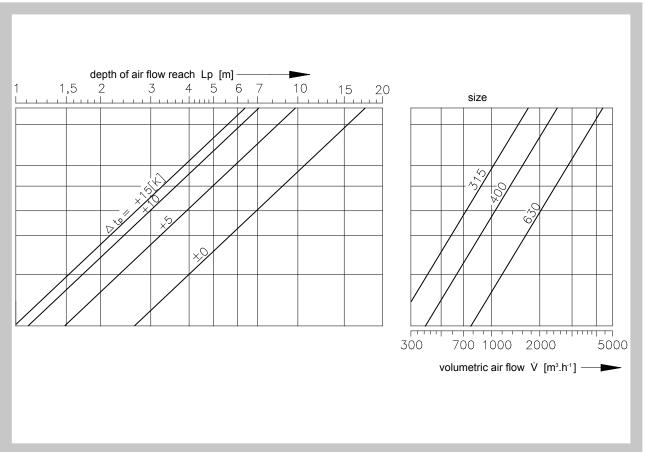



Diagram 6.3.2. Maximum depth of air flow reach - outlet 60°

Diagram 6.3.3. Maximum depth of air flow reach - outlet 75°

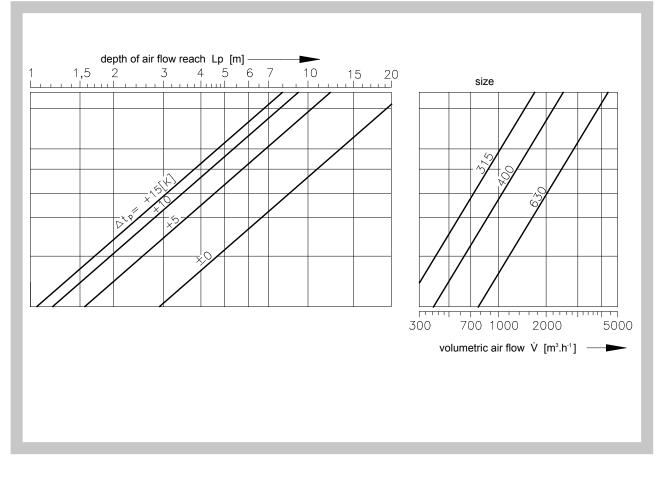
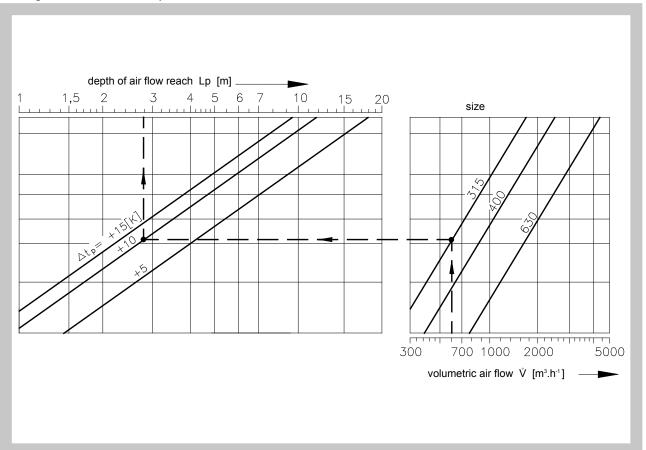



Diagram 6.3.4. Maximum depth of air flow reach - vertical outlet

Fig. 15 Example

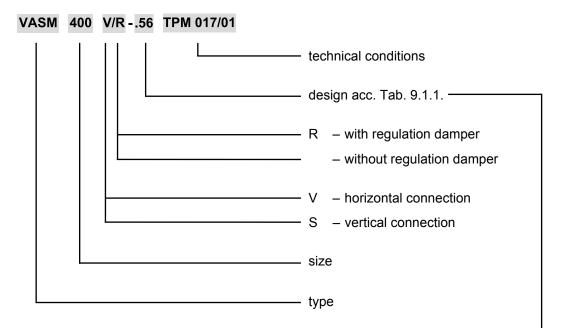
Data input:	Anemostat VASM horizontal connection $\dot{V} = 600 \text{ m}^3.\text{h}^{-1}$ output: cooling – horizontal $\Delta t_p = -7 \text{ K}$ heating – vertical $\Delta t_p = +10 \text{ K}$ H ₁ = 2 m A = 2,8 m X = 1,2 m
Diagram 6.2.1. :	L _{WA} = 42 dB(A) ∆p _c = 27 Pa
Diagram 6.2.4. :	$\Delta t_L / \Delta t_p = 0.037$ $\Delta t_L = -7 * 0.037 = -0.255 K$ $L = X + H_1 = 3.2 m (at wall)$
Diagram 6.2.5. :	\overline{w}_{H1} = 0,12 m/s ((between anemostats) \overline{w}_{L} = 0,23 m/s (at wall)
Diagram 6.3.4. :	maximum depth of reach: heating – vertical exhaust L_P = 3,1 m

IV. MATERIAL, FINISHING

7. Material

- **7.1.** The parts of anemostat front panels are made of steel sheet, except for the diffuser of anemostat size 630 which is made of aluminium sheet. The surface of front panels with diffusers and adjustable blades is finished with white baking varnish of RAL 9010 colour shade. Other shade requirements have to be agreed with the manufacturer in advance.
- 7.2. Connection boxes are made of galvanized plate.

V. PACKING, TRANSPORT AND STORAGE


8. Logistic data

- **8.1.** Anemostats are supplied in cardboard packages in bulk. As agreed with customers, anemostats may be transported on pallets or in crates. While transported and stored they must be protected against mechanical damage and weather conditions.
- **8.2.** Anemostats have to be stored in closed premises, in the environment without aggressive steams, gases and dusts. Temperature range have to be from -5 to +40°C and relative humidity max. 80%.

ΜΛΝϽίκ

VI. ORDERING INFORMATION

9. Ordering key

Tab. 9.1.1. Version of VASM

Version of anemostat - type of control	Two digits following the TP mark
Manually controlled	.01
Actuator controlled 230V, position regulation without signalling	.45
Actuator controlled 230V, position regulation with signalling	.46
Actuator controlled 24V, position regulation without signalling	.55
Actuator controlled 24V, position regulation with signalling	.56
Actuator controlled 24V SR, with smooth regulation	.57

MANDÍK, a.s. Dobříšská 550 26724 Hostomice Czech Republic Tel.: +420 311 706 706 E-Mail: mandik@mandik.cz www.mandik.com